Numerical Method Based On Initial Value-Finite Differences for Free Vibration of Stepped Thickness Plates

نویسنده

  • Ahmed M. Farag
چکیده

The main objective of the present paper is to derive an easy numerical technique for the analysis of the free vibration through the stepped regions of plates. Based on the utilities of the step by step integration initial values IV and Finite differences FD methods, the present improved Initial Value Finite Differences (IVFD) technique is achieved. The first initial conditions are formulated in convenient forms for the step by step integrations while the upper and lower edge conditions are expressed in finite difference modes. Also compatibility conditions are created due to the sudden variation of plate thickness. The present method (IVFD) is applied to solve the fourth order partial differential equation of motion for stepped plate across two different panels under the sudden step compatibility in addition to different types of end conditions. The obtained results are examined and the validity of the present method is proved showing excellent efficiency and rapid convergence. Keywords—Vibrations, Step by Step Integration, Stepped plate, Boundary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Finite Element Method for Free Vibration of Axially Moving Plates Based on First-Order Shear Deformation Theory

In this paper, the free vibration analysis of moderately thick rectangular plates axially moving with constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary conditions. Using Hamilton’s principle, three equations of moti...

متن کامل

Static and Free Vibration Analyses of Orthotropic FGM Plates Resting on Two-Parameter Elastic Foundation by a Mesh-Free Method

In this paper, static and free vibrations behaviors of the orthotropic functionally graded material (FGM) plates resting on the two-parameter elastic foundation are analyzed by the a mesh-free method based on the first order shear deformation plate theory (FSDT). The mesh-free method is based on moving least squares (MLS) shape functions and essential boundary conditions are imposed by transfer...

متن کامل

Vibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods

Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...

متن کامل

Vibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods

Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...

متن کامل

Free vibration analysis of functionally graded rectangular plates via differential quadrature method

In this study, free vibration of functionally graded rectangular plates for various types of boundary conditions has been presented . The properties of the plate are assumed as power- law form along the thickness direction , while poisson's ratio is kept constant. the linear vibration equations of functionally graded rectangular plates are derived based on first order shear deformation theory b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013